SCHEME(1) SCHEME(1)

NAME
Chez Scheme
Petite Chez Scheme

SYNOPSIS
scheme [optionsg] file ...
petite [optiong] file ...

DESCRIPTION
Chez Skemeis a high-performance implementation of R6RS Scheme with numexterssions. Chez
Schemeompiles sourcexpressionsncrementally providing the speed of compiled code in an intexecti
system.

Petite Chez Stemeis a freely distributable interpreted versionQifez Seemethat may be used as a run-
time environment folChez Slkkemeapplications or as a stand-alone Scheme sysi&fith the eception
that the compiler is not presefgite Chez Stemeis 100% compatible witlChez Skeme Interpreted
code is fast irPetite Chez Schemébut generally not nearly as fast as compiled code.

Scheme is normally used interaety. The system prompts the user with a right angle bracket (“>") at the
beginning of each input lineAny Scheme expression may be entered. The systelmates the xpression

and prints the result. After printing the result, the system prompgia &y more input. The user carite

the system by typing Control-D or by using the proceéite

COMMAND-LINE OPTIONS
Chez Schemmcognizes the following command line options:

-q, --quiet Suppress greeting and prompts.
--script file Runfile as a shell script.

--program file Run rnrs program ifile as a shell script.
--libdirsdir:... ~ Set library directories tdir:....
--libextsex:... Set library extensions &x:....

--compile-imported-libraries
Compile libraries before loading them.

--import-notify Enable import search messages.
--optimize-level 01|23
Set optimize leel to 0, 1, 2, or 3
--debug-on-exception
On uncaught exception, call debug.
--eedisable Disables the expression editor.
--eehistory off | file
Set expression-editor history file or disable restore aveldéistory.

--revert-inter action-semantics
Use old interaction semantics.

-b file, --boot file
Load boot code frorfile.

--verbose Trace boot search process.
--version Print version and exit.
--help Print brief command-line help and exit.

-- Pass all remaining command-line arguments through to Scheme.

The following options are recognized but cause the system to print an error message and exit bedause sa
heaps are not presently supported.

March 2010 Cadence Research Systems 1

SCHEME(1) SCHEME(1)

-h file, --heap file
-d[leve] file, --saveheap(leve] file
-c, --compact

WAITERS and CAFES
Interaction of the system with the user is performed by a Scheme program eedlgerarunning in a pro-
gram state called eafé. The waiter merely prompts, readsaeates, prints and loops back for more. It is
possible to open up a chain©hez Skemecafés by ivoking thenew-cafeprocedure with no guments.
New-cafe is also one of the options when an interrupt occurs. Eaehesaits own reset anie proce-
dures. Exitingrom one ca# in the chain returns you to the next one back, and so on, until the entire chain
closes and you lga the system altogetheSometimes it is useful to interrupt a long computation by typ-
ing the interrupt charactemter a nev café to execute something (perhaps to check a status variable set by
computation), and exit the @back to the old computation.

You can tell what lgel you are at by the number of angle brackets in the prompt, onevébotee, two for
level two, and so on. Three angle brackets in the prompt means you worddohexit from three caés o
get out ofChez Skeme If you wish to abort fronChez Skkemeand you are seral caks deep, the proce-
dureabortleaves the system directly.

You can «it the system by typing the end-of-file character (normally Control-D) or by using the procedure
ext. Typing Control-D is eqwilent to (exit), (exit (void)), or (exit 0), each of which is considered a-“nor
mal exit”.

DEBUGGER
Ordinarily, if an exception occurs during interae#i ise of the system, the default exception handler dis-
plays the condition with which the exception was raisegessiafor possibly later use by the dejger and
prints the message “type (debug) to enter thaugger’ Once in the deligger the user has the option of
inspecting the raise continuation, i.e., the stack frames of the pending calls. When an exception occurs in a
script or top leel program, or when the standard input and/or output ports are redirected,ahk eleep-
tion handler does notwathe continuation of the exception and does not print the “typauféinessage.

If the parameter deigy-on-exception is set to #t, hever, the default exception handler directlyakes
detug, whether running interaeély or not, and een when running a script or topvd program. The
“--debug-on-&ception” option may be used to set dghon-eception to #t from the command line, which
is particularly useful when debugging scripts or togll@rograms run via the “--script” or “--program”
options.

None of this applies to exceptions raised with a non-serioasiwg) condition, for which the dailt
exception handler simply displays the condition and returns.

KEYBOARD INTERRUPTS
Running programs may be interrupted by typing the interrupt character (normally Contriyi-@sponse,
the system enters a break handidnich prompts for input with a “break>" prompSeseral commands
may be issued to the break handiecluding “e” to &it from the handler and continue, “r" to reset to the
current cag, “a” to abortChez Skeme “n” to enter a n@ café, “i” to inspect the current continuation, and
“s” to display statistics about the interrupted prografthile typing an expression to theaiter, the inter
rupt character simply resets to the currené.caf

EXPRESSION EDITOR
When Chez Skemeis used interactely in a shell windav, the waiter’s “prompt and read” procedure
employs an expression editor that permits entry and editing of single- and multipleglires&ons, auto-
matically indents expressions as\ttaee entered, and supports name-completion based on the identifiers
defined in the interast® ewvironment. Theexpression editor also maintains a history of expressions typed
during and across sessions and supports tcshéllistory moement and search commands. Other edit-
ing commands include simple cursorvament via arrav keys, deletion of characters via backspace and
delete, and mgement, deletion, and other commands using mostly enechndings.

The expression editor does not run if the TERMrmmment variable is not set, if the standard input or out-
put files hae keen redirected, or if the --eedisable command-line option has been Tsedistory is

March 2010 Cadence Research Systems 2

SCHEME(1) SCHEME(1)

saved across sessions, by default, in the file “SHOME/.chezscheme_history”. The --eehistory command-
line option can be used to specify a different location for the history file or to disable the saving and restor
ing of the history file.

Keys for nearly all printing characters (letters, digits, and special characters) are “self insertingduly def
The open parenthesis, close parenthesis, open bracket, and close lmysciet $elf inserting as well,ub
also cause the editor to “flash” to the matching delimiteny. Furthermore, when a close parenthesis or
close bracket is typed, it is automatically corrected to match the corresponding open délaniter

Key bindings for other &ys and key squences initially recognized by the expression editor aen gi
belov, organized into groups by functionSome leys or key ®quences seevimore than one purpose
depending upon conte For example, tab is used both for identifier completion and for indentefioch
bindings are shown in each applicable functional group.

Multiple-key quences are displayed with hyphens betweendygedf the sequencesubthese fiphens
should not be entered. Whenawr more key quences perform the same operation, the sequences are
shown separated by commas.

Newlines, acceptance, exiting, and redisplay:

enter "M accept balanced entry if used at end of entry;
else add a newline before the cursor and indent

~J accepentry unconditionally

o) insertnewline after the cursor and indent

"D exit from the waiter if entry is empty;
else delete character under cursor

Z suspendo shell if shell supports job control

"L redisplayentry

“L-"L clearscreen and redisplay entry

Basic maement and deletion:

left, "B move aursor left

right, “F maove arsor right

up, P maee airsor up; from top of unmodified entry,
move © preceding history entry.

down, "N mae airsor down; from bottom of unmodified entry,
move © next history entry.

"D deletecharacter under cursor if entry not empty;
else exit from the waiter.

backspace, "H delete character before cursor

delete deleteharacter under cursor

Line movement and deletion:

home, "A maee airsor to beginning of line

end, "E mee aursor to end of line

“K, esc-k delete to end of line,af cursor is at the end
of a line, join with next line

“U deletecontents of current line

When used on the first line of a multiline entry of which only the first line is displayed, i.e., immediately
after history magement, "U deletes the contents of the entire eliky "G (described below).

Expression meement and deletion:

esc-"F mae arsor to next expression
esc-'B mee airsor to preceding expression
esc-] maee arsor to matching delimiter

71 flashcursor to matching delimiter
esc-"K, esc-delete delete next expression

esc-backspace, esc-"H delete preceding expression

March 2010 Cadence Research Systems 3

SCHEME(1) SCHEME(1)

Entry mosrement and deletion:

esc-< mee airsor to beginning of entry
esc-> mee airsor to end of entry
"G deletecurrent entry contents
“C deletecurrent entry contents; reset to end of history
Indentation:
tab re-indenturrent line if identifier prefix not
just entered; else insert identifier completion
esc-tab re-inderdurrent line unconditionally

esc-q, esc-Q, esc-"Q re-indent each line of entry

Identifier completion:

tab inseridentifier completion if just entered
identifier prefix; else re-indent current line

tab-tab shw possible identifier completions at end of
identifier just typed, else re-indent

"R insertnext identifier completion

If at end of existing identifier.e., not one just typed, the first tab re-indents, the second tab inserts identifier
completion, and the third shows possible completions.

History mosement:

up, P mee o preceding entry if at top of unmodified
entry; else mee yp within entry

down, "N mae 1 next entry if at bottom of unmodified
entry; else mee down within entry

esc-up, esc-"P nmve preceding entry from unmodified entry

esc-down, esc-"N nve 1o next entry from unmodified entry

esc-p searchackward through history forgn prefix

esc-n searcforward through history for gen prefix

esc-P searchackward through history forygn gring

esc-N searcforward through history for géen gring

To sarch, enter a prefix or string followed by one of the seagghsdquences. dllow with additional
search ky ®quences to search further baekavor forward in the historyFor example, enter “(define”
followed by one or more esc-pk ®quences to search backd for entries that are definitions, or
“(define” followed by one or more esc-Byksequences for entries that contain definitions.

Word and page mement:

esc-f, esc-F mee arsor to end of next word
esc-b, esc-B me airsor to start of preceding word
“X-[move arsor up one screen page

“X-] move airsor down one screen page

Inserting saed text:

Y insertmost recently deleted text
"V insertcontents of winde selection/paste buffer

Mark operations:

"@, “space, ” set mark to current cursor position
“X-"X move aursor to mark, lea mark at old cursor
W deletebetween current cursor position and mark

Command repetition:

esc-"U repeatext command four times
esc-"Un repeat next commanttimes

March 2010 Cadence Research Systems 4

SCHEME(1) SCHEME(1)

TOP-LEVEL ENVIRONMENT SEMANTICS
Upon startup, the “interaction environment” used to hold the tagdendings for user-definedaviables
and other identifiers contains an initial set of bindings, some standard and some sp€tifiz fceme
Any initial identifier binding may be replaced by redefining the identifier with a normaludpdkfinition.
For example, the initial binding foconscan be replaced with one that perform&evérse cons’as fol-
lows.

(define cons (lambda (x y) (import scheme) (cons y x)))

Code entered into the REPL or loaded from a file prior to this point will still use the original binding for
cons If you want it to use the mebinding, you must reenter or reload the code. Furthermore, the initial
bindings for variables li&kconsare immutable, so you cannot assign one (e.g., via set! or trace) without first
defining it. This is a change from koearlier versions of Chez Scheme (Version 7 and before) treated v
ables (but not éywords). If you prefer the Version 7 semantics, use the Vertenteraction-semantics”
command-line option or type (rert-interaction-semantics) before doingylning else. The e semantics

has some advantagegenthe old semantics, @ver. Because the initial set of bindings are immutable
and hae known values, the compiler can generate better code and sometimes produce better compiler
warnings about incorrect argument countith the ng&v semantics, the system can assume, fangle,

say, consreally iscons check to mak aire it receies the expected to aguments at compile time, and
generate inline code to allocate the pdihis is not the case with the old semantics, where the compiler
had to assume that the valuecofiscould change at grtime during a program run.

COMMAND-LINE FILE ARGUMENTS
In the normal mode of operation, the file names on the commandxtep{dor the arguments to thari
ous command-line options) are loaded befohez Skemebegins interacting with the uselEach of the
expressions in the loaded files iseeuted just as if it were typed by the user in response to a prdfnpt.
you wish to load a set of definitions each time, consider setting up a shell script to load the file “.schemerc”
from your home directory:

scheme ${HOME}/.schemerc $*

If you have a sibstantial number of definitions to load each time, it might behwhile to compile the
.schemerc file (that is, compile the definitions and name the resulting object file .schemerc).

Typically, a Sheme programmer creates a source file of definitions and other Scheme forms using an editor
such ai(1), emac$l), or the SWL (Scheme Widget Library) user interface and loads the file into Scheme
to test them. The ceentional filename extension f@hez Skeemesource files isss Such a file may be

loaded during a session by typing (lodiehamé), or by specifying the filename on the command line as
mentioned abge. Any expression that may be typed interaelly may be placed in a file to be loaded.

SCHEME SCRIPTS
When the “--script” option is used, the named file is treated as a Scheme shell script, and the script name
and remaining command-line arguments are madéahble via the parameter “command-linelTo support
executable shell scripts, the system ignores the first line of a loaded scriptgfris lvath #! followed by a
space or forward slashzor example, the following script prints its command-line arguments.

#! Jusr/bin/scheme --script
(for-each
(lambda (x) (display x) (newline))
(cdr (command-line)))

RNRSTOP-LEVEL PROGRAMS
The “--program” option is lik the “--script” option except that the script file is treated as an RNRS top-
level program. Thefollowing RNRS top-leel program prints its command-line arguments, as with the
script abee.

#! Jusr/bin/scheme --program

March 2010 Cadence Research Systems 5

SCHEME(1) SCHEME(1)

(import (rnrs))

(for-each
(lambda (x) (display x) (newline))
(cdr (command-line)))

“scheme-script” may be used in place of “scheme --program”, possibly gatdiix “/usr/bin/env” as sug-
gested in the nonnormedi RGRS appendix on running topvk programs as scripts, i.e., the first line of
the top-leel program may be replaced with the following.

#1 Jusr/bin/ew {InstallSchemeScriptName}

If a top-level program depends on libraries other than those built@itez Seeme the “--libdirs” option

can be used to specify which source and object directories to s&incttarly, if a library upon which a
top-level program depends has axtension other than one of the standard extensions, the “--libexts” option
can be used to specify additional extensions to search.

These options set the correspond®igez Skemeparameters library-directories and librasgtensions.
The values of both parameters are lists of pairs of strifigs. first string in each library-directories pair
identifies a source-file root directognd the second identifies the corresponding object-file root directory
Similarly, the first string in each library-extensions pair identifies a sourcextémson, and the second
identifies the corresponding object-filtension. Theull path of a library source or object file consists of
the source or object root followed by the components of the library nameegdréfyxslashes, with the
library extension added on the enHor example, for root /usr/lib/scheme, library name (app libl), and
extension .sls, the full path is /usr/lib/scheme/app/libl.sls.

The format of the arguments to “--libdirs” and “--libexts” is the same: a sequence of substrings separated
by a single separator charact@he separator character is a colon (:), except undedds where it is a
semi-colon (;). Between single separators, the source and object strings, if both are specified, are separated
by two separator characterdf a single separator character appears at the end of the string, the specified
pairs are added to theisting list; otherwise, the specified pairs replace the existing list. The parameters
are set after all boot files Vmbeen loaded.

If multiple “--libdirs” options appearl but the final one are ignored, and if If multiple “--Ikig” options
appeay dl but the final are ignoredIf no “--libdirs” option appears and the CHEZSCHEMELIBDIRS
ervironment \ariable is set, the string value of CHEZSCHEMELIBDIRS is treated as if it were specified by
a “--libdirs” option. Similarly, if no “--libexts” option appears and the CHEZSCHEMELIBEXT Sigan-

ment \ariable is set, the string value of CHEZSCHEMELIBEXTS is treated as if it were specified by a
“--libexts” option.

The library-directories and librarg<e=nsions parameters set by these options are consulted Ixpémeler

when it encounters an import for a library that has notipusly been defined or loaded. Thepander

first constructs a partial name from the list of components in the library name, e.g., “a/b” for library (a b).
It then searches for the partial name in each pair of root directories, in toydey each of the source
extensions then each of the objextemsions in turn before moving onto the next pair of root directoties.

the partial name is an absolute pathname, e.g., “"/.myappinit” for a library named (*/.myappinit), only the
specified absolute path is searched, first with each source extension, then with eaciktebgionhe Ifthe
expander finds a source file before it finds an object file, it loads the corresponding object file if the object
file exists and is not older than the source fifehis is not the case, and the parameter compile-imported-
libraries is set to #t, the expander compiles the library via compile-lib@therwise, the expander loads

the source file. An exception is raised during this process if a source or object file exists but is not readable
or if an object file cannot be created.

The search process used by the expander when processing an import for a library that has not yet been
loaded can be monitored by setting the parameter import-notify to #t. This parameter can be set from the
command line via the “--import-notify” command-line option.

OPTIMIZE LEVELS
The “--optimize-leel” option sets the initial value of theéhez Skkemeoptimize-level parameter to 0, 1, 2,
or 3. The value is 0 by default.

March 2010 Cadence Research Systems 6

SCHEME(1) SCHEME(1)

At optimize-levels 0, 1, and 2, code generated by the compilsais i.e., generates full type and bounds
checks. Atptimize-lesel 3, code generated by the compilewissafei.e., may omit these checkklnsafe

code is usuallydster but optimize-leel 3 should be used only for well-tested code since the absense of
type and bounds checks may result il memory references, corruption of the Scheme heap (which
may cause seemingly unrelated problems later), system crashes, or other undesirable behaviors.

At optimize levels 2 and 3, the system also assumes that the names of built-in procesarbeihariginal
values, &en if assigned, in an interaction environment whose semantics teen reerted by the reert-
interaction-semantics procedure or because theverreteraction-semantics” command-line option has
been supplied. This aspect of the optimiagllés irrelevant for code appearing within a library or RNRS
top-level program or bindings imported from a module or library.

COMPILING FILES
Chez Skkemecompiles source expressions as it sees tHamrder to speed loading of a large file, the file
may be compiled with the output placed in an object file. (compile-file “fo0”) compiles the expressions in
the file “foo.ss” and places the resulting object code on the file “foo.s0”. Loading a pre-compiled file is no
different from loading the source file, except that loading is faster since compilation is already done.

To compile a program to be run with --program, use compile-program instead of compilesfitgile-
program preserves the first line unchanged, if it begins with #! followed by a forward slash orApace.

while compile-file compresses the resulting object file, compile-program does not do so if the #! line is
present, so it can be recognized by the shallipt executor Any libraries upon which the tope pro-

gram depends, other than built-in libraries, must be compiled first via compile-file or compile-litnegy

can be done manually or by setting the parameter compile-imported-libraries to #t before compiling the
program.

To compile a script to be run with --script, use compile-script instead of compilezilapile-script is lile
compile-program, but, l& compile-file, implements the interae#i p-level semantics rather than the
RNRS top-leel program semantics.

BOOT and HEAP FILES
When Chez Skeemeis run, it looks for one or more boot files to load. Boot files contain the compiled
Scheme code that implements most of the Scheme system, including the intecprepder, and most
libraries. Booffiles may be specifiedkplicitly on the command line via “-b” options or implicitlyn the
simplest case, no “-b” options are/gn and the necessary boot files are loaded automatically based on the
name of the xecutable. Br example, if the recutable name is “myapp”, the system looks for
“myapp.boot” in a set of standard directories. It also looks for and logdsibardinate boot files required
by “myapp.boot”. Subordinate boot files are also loaded automatically for the first boot file explicitly spec-
ified via the command line. When multiple boot files are specified via the command line and boot each file
must be listed before those that depend upon it.

The “--verbose” option may be used to trace the boot file searching process and must appearybefore an
boot arguments for which search tracing is desired.

Ordinarily, the search for boot files is limited to a set of default installation directotieshis may be
overridden by setting the environment variable SCHEMEHEAPDIRS. SCHEMEHEAPDIRS should be a
colon-separated list of directories, listed in the order in which dgheuld be searchedwithin each direc-

tory, the two-character escape sequence “%v” is replaced by the current version, and-tiertacter

escape sequence “%m” is replaced by the machine tppercent followed by another character is
replaced by the second character; in partictif&a€6” is replaced by “%”, and “%:” is replaced by “:1f
SCHEMEHEAPDIRS ends in a non-escaped colon, the default directories are searched after those in
SCHEMEHEAPDIRS; otherwise, only those listed in SCHEMEHEAPDIRS are searched. Uider W
dows, semi-colons are used in place of colons.

Boot files consist of a header followed by ordinary compiled code and may be created withoogfile.
For example,

(make-boot-file "myapp.boot" '("petite”)
"myappl.so” "myapp2.s0")

March 2010 Cadence Research Systems 7

SCHEME(1) SCHEME(1)

creates a boot file containing the code from myappl.so and myapp2.so with a header identifying petite.boot
as a boot file upon which thewadoot file dependsSource files can be provided as well and are compiled
on-the-fly by make-boot-header.

Multiple alternatves for the boot file upon which theweéoot file depends can be listed, e.g.:

(make-boot-file "myapp.boot" '("petite
"myappl.so” "myapp2.s0")

scheme”)

When possible, both “scheme” and “petite” should be specified when creating a boot file for an application,
as shown abe, so hat the application can run in eitHegtite Chez Swemeor Chez Skeme If the appli-
cation requires the use of the compijast “scheme” should be specified.

If the nev boot file is to be a base boot file, i.e., one that does not depend on another boot file, petite.boot
(or some other boot file created from petite.boot) should be listed first among the input files.

(make-boot-file "myapp.boot" ’() "petite.boot"
"myappl.so” "myapp2.so")

DOCUMENTATION
Complete documentation f@hez Skemeis available in two parts: The Scheme Bgramming Languge,
4th Edition and The Chez Schemersion 8 Users Guide Both documents arevalable electronically at
www.scheme.coas well as in printed form.

Several example Scheme programs, ranging from a singafial procedure to a somewhat complai-
fication algorithm, are in the examples directory (see FILESA)elbooking at and trying out xample
programs is a good way to start learning Scheme.

ENVIRONMENT
The environmentariableSCHEM EHEAPDIRS (see abwee) may be set to a colon-separated (semi-colon
under Windows) list of directories in which to search for boot files.

FILES
{usr/bin/scheme xecutable file
/usr/bin/petite gecutable file
/usr/bin/{InstallISchemeScriptNameecutable file
Jusr/lib/csv8.0/lib gample program library

lusr/lib/csv8.0/i3le booaind include files

SEE ALSO

R. Kent Dylvig, The Scheme Bgramming Languge, 4h Edition MIT Press (2009),
http://www.scheme.com/tspl4/.

R. Kent Dylvig, Chez Scheme e¥ion 8 Users Cuide Cadence Research Systems (2010),
http://www.scheme.com/csug8/.

Michael SperberR. Kent Dybvig, Matthes Flatt, and Anton &n Straaten, eds., “Riee06 Report on the
Algorithmic Language Scheni€¢2007), http://www.rérs.org/.

Daniel P Friedman and Matthias Felleiserhe Little Schemefourth edition, MIT Press (1996).

Harold Abelson and Gerald J. Sussman with Julie Sussstarctue and Interpetation ofComputer Po-
grams, Second EditigMIT press (1996).

AUTHOR
Cadence Research Systeimtsp://www.scheme.com

March 2010 Cadence Research Systems 8

