
Chez Scheme Version 7.4 Release Notes
Copyright c© 2007 Cadence Research Systems
All Rights Reserved
December 2007

1. Overview

This document outlines the changes made to Chez Scheme for Version 7.4 since Version 7.0.

Version 7.4 is available for the following platforms:

• Intel 80x86 Linux, threaded and nonthreaded

• Intel 80x86 Windows, threaded and nonthreaded

• Apple PowerPC Mac OS X 10.4, threaded and nonthreaded

• Apple Intel Mac OS X 10.4, threaded and nonthreaded

• Intel 80x86 FreeBSD, threaded and nonthreaded

• Intel 80x86 OpenBSD, threaded and nonthreaded

• Sun Sparc Solaris, 32-bit threaded and nonthreaded

• Sun Sparc Solaris, 64-bit threaded and nonthreaded

This document contains three sections describing significant (1) functionality changes, (2) bugs fixed, and
(3) performance enhancements. A version number listed in parentheses in the header for a change indicates
the first minor release or internal prerelease to support the change.

More information on Chez Scheme and Petite Chez Scheme can be found at http://www.scheme.com, and
extensive documentation is available in The Scheme Programming Language, 3rd edition and the Chez
Scheme Version 7 User’s Guide.

2. Functionality Changes

2.1. Expression Editor (7.4)

A new expression editor has been added and runs by default whenever Chez Scheme or Petite Chez Scheme
is run in a shell window. The expression editor permits entry and editing of single- and multiple-line
expressions, automatically indents expressions as they are entered, and supports name-completion based
on the identifiers defined in the interactive environment. The expression editor also maintains a history of
expressions typed during and across sessions and supports tcsh-like history movement and search commands.
Details can be found in Chez Scheme Version 7 User’s Guide and the manual page.

2.2. Profiling support (7.4)

The new procedure profile-dump-html allows profiling information to be written to HTML files, including
one file (profile.html) containing summary information and one additional file for each source file showing a
listing of the source file, color-coded according to relative execution counts.

The parameter profile-palette may be used to control the colors used, including the number of colors.

Chez Scheme Version Version 7.4 Release Notes Page 1



The new procedure profile-dump-list returns profiling information as a list of entries, each of which
records the execution count, pathname, beginning file position, and ending file position for each profiled
block of code.

Details can be found in Chez Scheme Version 7 User’s Guide.

These procedures are all available in Petite Chez Scheme as well as in Chez Scheme, as are profile-dump
and profile-clear, which were previously available only in Chez Scheme. This allows profiling information
to be gathered for code compiled with profiling enabled in Chez Scheme and subsequently run in Petite Chez
Scheme.

2.3. New Eq Hash Table Support (7.4)

Several R6RS hashtable procedures have been added:

make-eq-hashtable
hashtable?
hashtable-size
hashtable-ref
hashtable-set!
hashtable-delete!
hashtable-contains?
hashtable-update!
hashtable-copy
hashtable-clear!
hashtable-keys
hashtable-entries
hashtable-mutable?

The R6RS procedures below have not yet been added:

make-eqv-hashtable
make-hashtable
hashtable-equivalence-function
hashtable-hash-function
equal-hash
string-hash
string-ci-hash
symbol-hash

Thus, hashtable support is presently limited to “eq” hashtables.

Weak eq hashtables are supported via the following procedures:

make-weak-eq-hashtable
eq-hashtable-weak?

In addition, several procedures specific to eq hashtables have been added:

eq-hashtable?
eq-hashtable-cell
eq-hashtable-contains?
eq-hashtable-delete!
eq-hashtable-ref
eq-hashtable-set!
eq-hashtable-update!

Chez Scheme Version Version 7.4 Release Notes Page 2



These are like their generic counterparts above but work only for eq hash tables and have somewhat less
overhead, especially at optimize-level 3.

The old eq hash-table implementation is still available through the existing procedures make-hash-table,
get-hash-table, put-hash-table!, and remove-hash-table. These will be changed to use the new im-
plementation in a subsequent release.

The new implementation of eq hashing is “generation friendly,” which means there is no overhead for older
objects that do not move on a given collection. The old implementation rehashes all objects on the first
failed access after any garbage collection.

With the new implementation, hash tables also shrink when many keys have been deleted (or for weak hash
tables, become inaccessible). In the old implementation, once a hash table has grown to a certain size, it
never shrinks.

Details can be found in Chez Scheme Version 7 User’s Guide.

2.4. Terminating equal? (7.4)

The equal? procedure now terminates with behavior required by R6RS. It is coded in such a way that it
remains fast for trees and acyclic graphs while also being fast when cycles are present.

2.5. Miscellaneous R6RS functionality (7.4)

Several R6RS primitives and syntactic forms have been added:

• assp, memp, and remp

• datum->syntax (synonym for datum->syntax-object) and syntax->datum (syntax-object->datum)

• exact (synonym for inexact->exact) and inexact (exact->inexact)

• boolean=? and symbol=?

• eof-object

• for-all (synonym for andmap) and exists (ormap)

• let*-values

• list-sort, vector-sort, and vector-sort!

• vector-map and vector-for-each

• find, filter, and partition

• fold-left, fold-right

• cons* (synonym for list*)

Details can be found in Chez Scheme Version 7 User’s Guide.

2.6. Filesystem operators (7.4)

The file-exists? procedure now takes an additional follow? argument: if true (the default), file-exists?
follows symbolic links; otherwise it does not.

Chez Scheme Version Version 7.4 Release Notes Page 3



The new procedures file-regular?, file-directory?, and file-symbolic-link? have been added to
query the type of a file. The first two accept a string pathname and the optional follow? argument; the
latter accepts only a string pathname and never follows symbolic links.

The procedure delete-file now takes an additional error? argument; if true, delete-file signals an error
if the file does not exist or cannot be deleted; otherwise (the default), it returns the boolean value #t on
success and #f on failure.

The related procedure delete-directory has been added, with the same interface.

The new procedure directory-list takes a string pathname naming a directory (folder) and returns a list
of the files found in that directory.

The new procedure directory-separator? accepts a character argument and returns #t if the character is
a valid directory separator and #f otherwise. The character #\/ is a valid directory separator on all current
machine types and #\\ is a valid directory separator under Windows.

The new procedure directory-separator returns the preferred directory separator for the current machine
type, which is #\\ for Windows and #\/ for other systems.

The new procedures path-extension, path-last, path-parent, path-root each take a string argument
and return a component of the path represented by the string.

Details can be found in Chez Scheme Version 7 User’s Guide.

2.7. Date and time procedures (7.4)

A set of procedures for handling times and dates have been added. The set is a subset of those listed in
SRFI 19. It includes the following time-handling procedures.

current-time, make-time, time?
time-type, set-time-type!
time-second, set-time-second!
time-nanosecond, set-time-nanosecond!
time=?, time<?, time<=?, time>=?, time>?

It also includes the following date-handling procedures.

current-date, make-date, date?
date-second, date-nanosecond, date-minute, date-hour
date-day, date-month, date-year
date-week-day, date-year-day,
date-zone-offset

The time types utc, monotonic, duration, process, and thread are supported. Details can be found in
Chez Scheme Version 7 User’s Guide.

2.8. New meta-cond syntax (7.4)

A new syntactic form, meta-cond, has been added. It is similar to cond except the tests are evaluated when
the form is expanded. meta-cond may be used to choose, at expansion time, from among a set of possible
forms, e.g., based on optimization level, machine type, or system configuration. Details can be found in Chez
Scheme Version 7 User’s Guide.

2.9. Windows scheme.h, dllimport, and static libraries (7.4)

Under Windows, defining SCHEME IMPORT before including scheme.h now causes scheme.h to declare its entry
points using extern declspec (dllimport) rather than extern declspec (dllexport) (which remains

Chez Scheme Version Version 7.4 Release Notes Page 4



the default). Not defining SCHEME IMPORT and instead defining SCHEME STATIC causes scheme.h to declare
exports using just extern. The static kernel csvv s.lib, (where v is the Scheme version) and custom s.obj
are built using SCHEME STATIC.

2.10. OpenBSD ’x86 support (7.4)

Support for running Chez Scheme under OpenBSD on Intel ’x86 architectures has been added. The non-
threaded version uses the machine type “i3ob,” and the threaded version uses the machine type “ti3ob.”

2.11. Windows environment procedures (7.4)

Under Windows, getenv now looks for an environment binding using the GetEnvironmentVariable Windows
API function before the standard C library getenv. Similarly, putenv now sets the environment variable
using both SetEnvironmentVariable and the C library putenv. This should circumvent some problems
where two versions of the C library, each of which has its own copy of the environment, are used in the same
process.

2.12. iota and enumerate (7.4)

The new procedure iota takes a nonnegative integer n and returns a list of integers starting at 0 and ending
at n− 1. The new procedure enumerate takes a list ls and returns a list of integers starting at 0 and ending
at n− 1, where n is the length of the list.

2.13. Prettier unique names for gensyms (7.4)

Unique names now start with a lower-case letter and contain only lower-case letters and digits, with a hyphen
separating the portion of the name that is common to all names created during a session and the portion
that is unique to the specific name. This allows them to be printed without the enclosing vertical bars and
generally makes them more readable (and appear less like cartoon cussing).

2.14. read-token and datum comments (7.4)

The procedure read-token no longer scans past datum comments but rather returns a token with type
quote and value datum-comment. This allows programs that use read-token to treat a commented-out
datum as it would any other datum. The expression editor exploits this feature to indent commented-out
expressions properly.

2.15. Inspector interface (7.4)

The interactive inspector ref (r) command now allows selection of frame and closure elements by name as
well as number, when names appear. If multiple elements have the same name, the name will select one,
and the others must be selected by number.

The forward (f) and back (b) commands may now be used to move backward and forward among record
fields after a record field is selected by number.

The inspector eval (e), =>, and set! commands employ the new expression editor when the argument
expression is not typed on the same line as the command.

Record inspector objects now accept a length message, which returns the number of fields.

Chez Scheme Version Version 7.4 Release Notes Page 5



2.16. fresh-line and set-port-bol! (7.4)

The new procedure fresh-line has been added. It is like newline but has no effect if the port is believed
already to be positioned at the beginning of a line. The related procedure set-port-bol! has been added,
which marks a port as being positioned at the beginning of a line. (This is primarily useful when dealing
with generic ports.)

2.17. Nested transcripts (7.4)

It is now possible to run a transcript within a transcript using either transcript-on or transcript-cafe.

2.18. Thread-safe compilation and loading (7.3)

Various changes have been made to support the concurrent use of the compiler and loader, e.g., via eval,
compile, compile-file, and load in multiple threads.

Compiled code loaded or evaluated by a given thread can be used reliably in that thread or threads subse-
quently forked, directly or indirectly, by the thread. It cannot be used reliably in other threads, since the
data (in this case, the machine code produced by the compiler or loaded from a compiled file) written by
one thread is not necessarily available immediately in other threads.

2.19. Source-path handling (7.3)

The with-source-path procedure no longer adds the "./” prefix when a file is found in the current directory,
even if ".” is one of several included in list of source directories, i.e., the list value of the source-directories
parameter. It also treats the empty directory "" as equivalent to "." rather than as equivalent to "/".

The load procedure and include syntax now record as part of the loaded code’s inspector information the
file name given to them rather than the full path derived via a search of the source directories, to avoid the
unintentional inclusion of host-machine paths in code that might be run on other systems.

The inspector and various error handlers now try harder to locate source files from recorded inspector
information. For absolute pathnames starting with a / (or \ or a directory specifier under Windows), they
try the absolute pathname first, then look for the last (filename) component of the path in the list of source
directories. For pathnames starting with ./ (or .\ under Windows) or . ./ (or . .\ under Windows), they
look in "." or ". ." first, as appropriate, then for the entire .- or . .-prefixed pathname in the source
directories, then for the last (filename) component in the source directories. For other (relative) pathnames,
they look for the entire relative pathname in the list of source directories, then the last (filename) component
in the list of source directories.

2.20. scheme.h now C++ compatible (7.3)

The "C” modifier is now inserted before extern function declarations in scheme.h when the cplusplus C
preprocessor variable is set, to allow the entries declared in the include file to be used directly from C++.

2.21. Fixnum-only vectors (fxvectors) (7.3)

Support for “fxvectors,” i.e., vectors of fixnums has been added, with operators that parallel the vec-
tor operators: fxvector, make-fxvector fxvector?, fxvector-length, fxvector-ref, fxvector-set!,
fxvector-fill!, fxvector-copy, list->fxvector, and fxvector->list. Fxvectors are written with the
#vfx prefix in place of the the # prefix for vectors, e.g., #vfx(1 2 3) or #10vfx(2). The read-token pro-
cedure can now return the two new fxvector tokens vfxparen and vfxnparen corresponding to the vector
tokens vparen and vnparen.

Chez Scheme Version Version 7.4 Release Notes Page 6



2.22. quasiquote allocation guarantee (7.3)

The quasiquote form now guarantees that new pairs or vectors will be allocated any time a nonempty
unquote or unquote-splicing form is used, even if the unquoted object is itself a constant. For example,
while ‘(a . b) is equivalent to ’(a . b) and returns a constant pair (the same one each time the quasiquote
expression is evaluated, e.g., in a loop or procedure called multiple times) ‘(,’a . ,’b) is equivalent to
(cons ’a ’b) so that a new pair is allocated each time the quasiquote expression is evaluated.

2.23. record-reader extension (7.3)

The record-reader procedure now allows the first argument to be a record-type descriptor when second is
#f so that the association can be removed by passing in the record-type descriptor as well as by passing in
the record name.

2.24. Intel Mac support (7.2)

Support for running Chez Scheme under Mac OS 10.4 on Intel Macs has been added. The nonthreaded
version uses the machine type “i3osx,” and the threaded version uses the machine type “ti3osx.”

2.25. Threaded PPC Mac support (7.2)

Support for running the threaded version of Chez Scheme under Mac OS 10.4 on PPC Macs has been added.
The threaded version uses the machine type “tppcosx.”

2.26. vector-set-fixnum! procedure (7.2)

A new procedure, vector-set-fixnum!, has been added. It works just like vector-set! but requires the
new value (third argument) to be a fixnum. It is faster to store a fixnum than an arbitrary value, since the
system has to record potential assignments from older to younger objects to support generational garbage
collection. Care must be taken to ensure that the argument is indeed a fixnum, however; otherwise, the
collector may not properly track the assignment. The primitive performs a fixnum check on the argument
except at optimization level 3.

2.27. Fasl write of eq hashtables (7.2)

The representation of eq hash tables has been altered to allow them to be written using fasl-write, provided
that they keys and values are suitable for fasl-write.

2.28. FreeBSD ’x86 support (7.1)

Support for running Chez Scheme under FreeBSD on Intel ’x86 architectures has been added. The non-
threaded version uses the machine type “i3fb,” and the threaded version uses the machine type “ti3fb.”

2.29. Exec shield support (7.1)

Support for running Chez Scheme under Linux kernels with the “exec shield” feature enabled has been
added.

Chez Scheme Version Version 7.4 Release Notes Page 7



2.30. quasisyntax (7.1)

New quasisyntax, unsyntax, and unsyntax-splicing syntactic forms have been added. A quasisyntax
form is like as syntax form except that the portions encapsulated within an unsyntax or unsyntax-splicing
form are evaluated and their values inserted into the output, as with quasiquote. Hash-backquote ( #‘ ),
hash-comma ( #, ), and hash-comma-at ( #,@ ) abbreviations may be used by analogy with the similar
quasiquote abbreviations.

2.31. syntax->vector (7.1)

The new procedure syntax->vector takes a syntax object representing a vector-structured form and returns
a vector of syntax-objects, each representing the corresponding subform of the input form, in a manner similar
to the existing syntax->list procedure.

2.32. MacOS X dlopen support (7.1)

The foreign interface, including load-shared-object, now use the dlopen C library function and related
features recently added to MacOS X for loading foreign code and looking up foreign entry points.

2.33. Universal foreign-callable support (7.0a)

Support for foreign-callable in Version 7.0 and prior releases was limited to the Intel Windows and
Linux environments (threaded and nonthreaded). foreign-callable is now supported for the threaded and
nonthreaded Solaris (32- and 64 bit) and PowerPC MacOS X.

2.34. New command-line parameter (7.0a)

The existing command-line-arguments parameter is set to a list of the command-line arguments by the de-
fault value of the scheme-script parameter whenever a Scheme shell script is run. The new command-line is
similar, but is set to include as well the name of the script as the first element. Thus, (car (command-line))
can be used to determine the script, and (cdr (command-line)) can be used to determine the command-line
arguments.

2.35. Socket example (7.0a)

The socket example found in examples/socket.ss in the release directory has been made more robust. The
updated code also appears in the Chez Scheme Version 7 User’s Guide.

3. Bug Fixes

3.1. Error-case bug in heap search-path processing (7.4)

A broken fprintf control-string used in a warning about extra percent signs in a heap search path has been
fixed.

3.2. mutex-acquire compiler problem (7.4)

The compiler mistakenly assumed that mutex-acquire always returns true, but this is not necessarily the
case when the optional block? flag is false. This problem has been fixed.

Chez Scheme Version Version 7.4 Release Notes Page 8



3.3. Sscheme deinit problem (7.4)

Sscheme deinit was not properly recording the fact that the system was deinitialized so that a subsequent
call to Sscheme init would fail. This problem has been fixed.

3.4. PowerPC generic and fixnum addition and subtraction (7.3)

The compiler no longer generates code that uses the PowerPC mcrxr instruction in the implementation
of the fixnum and generic addition and subtraction operators. The instruction is now an optional part of
the PowerPC architecture and is not supported by some PowerPC implementations, notably the processors
used in the Apple G5. Instead of passing along an illegal instruction trap, the O/S silently implements the
instruction in software at a cost hundreds of times greater than the cost of a typical instruction. With a
different mechanism now in place, most programs will run noticeably faster, with some possibly running
more than twice as fast.

3.5. Large allocation requests (7.3)

A bug that sometimes resulted in an invalid memory reference when a large allocation request was made,
e.g., when an attempt was made to allocate a vector or string with length equal to the most-positive fixnum,
has been fixed.

3.6. bytes-allocated (7.3)

A bug that caused the bytes-allocated procedure to return a negative number for heaps exceeding 2GB
on 32-bit machines has been fixed.

3.7. letrec* internal compiler error (7.3)

A bug that sometimes resulted in an internal compiler error when a reference to a possibly undefined variable
occurred in a letrec or letrec* expression appearing in a letrec* binding has been fixed.

3.8. Cache flush or memory protection error (7.3)

A bug that on rare occasions resulted in a bad mprotect argument error or an invalid memory reference
while synchronizing data and instruction caches has been fixed.

3.9. Sactivate thread bug (7.3)

A bug in Sactivate thread that could result in memory faults and other undesirable behavior when the
initial (main) thread is actively running Scheme code has been fixed.

3.10. Multiple-value handling bug (7.1)

A bug in the inliner’s handling of call-with-values that could result in an invalid memory reference at
higher optimization levels has been fixed.

Chez Scheme Version Version 7.4 Release Notes Page 9



3.11. Removed open-input-file exclusive option (7.1)

The exclusive option has been eliminated from the file open operations, including open-input-file, since
the underlying mechanism used on many operating systems does not support exclusive access to read-only
files. The option remains for output and input/output files.

3.12. Unbound meta variables (7.1)

A bug that caused variables defined with meta define to be unbound in environments other than the
interaction environment has been fixed.

3.13. Unbound compiler-related variables (7.1)

The variables make-boot-header and compile-script previously evaluated to the value #<unbound> in
Petite Chez Scheme. They are now bound to procedures that report that the compiler is not loaded, as with
other compiler-related variables. [This bug dated back to Version 6.9c.]

3.14. Logical test operations (7.0a)

A bug in the optimizer’s treatment of logtest, logbit?, fxlogtest, and fxlogbit?, which caused it to
treat their return values as always true in test contexts, has been fixed. [This bug dated back to Version
6.9d.]

3.15. Format “$” bug (7.0a)

A bug that caused format to reject exact real numbers has been fixed, and format also now produces a
more appropriate error message when passed a non-real number. [This bug dated back to Version 6.9b.]

3.16. thread? for nonthreaded versions (7.0a)

The thread? procedure, like other threading procedures, is no longer defined in the nonthreaded versions of
the system. [This bug dated back to Version 6.5.]

4. Performance Enhancements

4.1. Storage management (7.4)

The default setting of collect-trip-bytes has also been increased from 220 to 222, reflecting the larger
sizes of contemporary memories. This makes collections occur less frequently. The number of generations
has been increased from 4 to 5 so that collection of long-lived objects occurs even less frequently.

4.2. PowerPC performance (7.3)

The performance of fixnum and generic arithmetic on some PowerPC systems has been improved. See
Section 3.4.

Chez Scheme Version Version 7.4 Release Notes Page 10



4.3. Vector improvements (7.3)

When reading a vector with an unspecified length, e.g., #(1 2 3) rather than #3(1 2 3), the reader now
performs less memory allocation, resulting in less overall storage management cost and less overall overhead,
especially for files with numerous small vectors. Filling of vectors either by make-vector or vector-fill! is
now more efficient as well. (Additional performance can be gained via fxvectors or the vector-set-fixnum!
procedure, described in Sections 2.21 and 2.26.)

4.4. Guardian registration (7.3)

Registering older-generation objects with an older-generation guardian now results in less collection overhead,
e.g., when older objects are reregistered as part of the implementation of the transport guardians described
the 1993 ACM PLDI paper on Guardians.

4.5. Record accessors (7.1)

The speed of record field accessors and mutators at optimization levels 2 and below has been improved by
inlining the actual memory loads and stores.

4.6. foreign-callable for nonthreaded versions (7.0a)

The speed of a call into Scheme via foreign-callable has been improved slightly for nonthreaded versions
of the system. The difference is likely to be noticeable only for calls to Scheme procedures that execute
quickly.

Chez Scheme Version Version 7.4 Release Notes Page 11


