
Chez Scheme Version 8.4 Release Notes
Copyright c© 2011 Cadence Research Systems
All Rights Reserved
October 2011

1. Overview

This document outlines the changes made to Chez Scheme for Version 8.4 since Version 8.0.

Version 8.4 is supported for the following platforms. The Chez Scheme machine type (returned by the
machine-type procedure) is given in parentheses.

• Linux x86, nonthreaded (i3le) and threaded (ti3le)

• Linux x86 64, nonthreaded (a6le) and threaded (ta6le)

• MacOS X x86, nonthreaded (i3osx) and threaded (ti3osx)

• MacOS X x86 64, nonthreaded (a6osx) and threaded (ta6osx)

• Windows x86, nonthreaded (i3nt) and threaded (ti3nt)

• Windows x86 64, nonthreaded (a6nt) and threaded (ta6nt) [experimental]

• OpenBSD x86, nonthreaded (i3ob) and threaded (ti3ob)

• OpenBSD x86 64, nonthreaded (a6ob) and threaded (ta6ob)

• FreeBSD x86, nonthreaded (i3fb) and threaded (ti3fb)

• FreeBSD x86 64, nonthreaded (a6fb) and threaded (ta6fb)

• NetBSD x86, nonthreaded (i3nb) and threaded (ti3nb)

• NetBSD x86 64, nonthreaded (a6nb) and threaded (ta6nb)

• OpenSolaris x86, nonthreaded (i3s2) and threaded (ti3s2)

• OpenSolaris x86 64, nonthreaded (a6s2) and threaded (ta6s2)

This document contains three sections describing significant (1) functionality changes, (2) bugs fixed, and
(3) performance enhancements. A version number listed in parentheses in the header for a change indicates
the first minor release or internal prerelease to support the change. Many other changes, too numerous
to list, have been made to improve reliability, performance, and the quality of error messages and source
information produced by the system.

More information on Chez Scheme and Petite Chez Scheme can be found at http://www.scheme.com, and
extensive documentation is available in The Scheme Programming Language, 4th edition (available directly
from MIT Press or from online and local retailers) and the Chez Scheme Version 8 User’s Guide. Online
versions of both books can be found at http://www.scheme.com.

2. Functionality Changes

2.1. sleep now deactivates calling thread (8.4)

The sleep procedure now deactivates the calling thread to allow collections to occur while it is asleep.

Chez Scheme Version Version 8.4 Release Notes Page 1

2.2. Experimental support for Windows x86 64 (8.4)

Experimental support for running Chez Scheme with 64-bit pointers on the x86 64 architecture under Win-
dows has been added, with machine types a6nb (nonthreaded) and ta6nb (threaded).

2.3. Annotations (8.4)

When source code is read from a file by load, compile-file, or variants of these, such as load-library,
the reader attaches annotations to each object read from the file. These annotations identify the file and
the position of the object within the file. Annotations are tracked through the compilation process and
associated with compiled code at run time. The expander and compiler use the annotations to produce
syntax errors and compiler warnings that identify the location of the offending form, and the inspector uses
them to identify the locations of calls and procedure definitions.

While these annotations are usually maintained “behind the scenes,” Version 8.4 allows the programmer
direct access to them via a set of routines for creating and accessing annotations.

The procedures that create, check for, and access annotations, source objects, and source-file descriptors are
summarized below.

(make-annotation obj source-object obj) → annotation
(annotation? obj) → boolean
(annotation-expression annotation) → obj
(annotation-source annotation) → source-object
(annotation-stripped annotation) → obj

(make-source-object sfd uint uint) → source-object
(source-object? obj) → boolean
(source-object-bfp source-object) → uint
(source-object-efp source-object) → uint
(source-object-sfd source-object) → sfd

(make-source-file-descriptor string binary-input-port) → sfd
(make-source-file-descriptor string binary-input-port reset?) → sfd
(source-file-descriptor? obj) → boolean
(source-file-descriptor-checksum sfd) → obj
(source-file-descriptor-path sfd) → obj

Additional annotation-related procedures include the following

(get-datum/annotations textual-input-port sfd uint) → obj, uint
(open-source-file sfd) → #f or port
(syntax->annotation obj) → #f or annotation

All of procedures are described in detail in Section 11.11 of the User’s Guide.

Once read, an annotation can be passed to the expander, interpreter, or compiler. The procedures sc-expand,
interpret, and compile all accept annotated or unannotated input.

The value of current-expand, which defaults to sc-expand and is used by expand, compile, interpret,
compile-file, compile-library, compile-program, compile-script, and compile-port to expand in-
put forms, must accept either annotated or unannotated input. So must the value of current-eval,
which defaults to compile (Chez Scheme) or interpret (Petite Chez Scheme) and is used by eval, load,
load-library, and load-program to evaluate input forms.

This is an incompatible change; in previous releases, only unannotated input was passed to the values of
current-expand and current-eval when they did not hold their default values. For example:

(load "myfile.ss" pretty-print)

Chez Scheme Version Version 8.4 Release Notes Page 2

prints annotations rather than unannotated forms. To print unnannotated forms, the annotations must be
stripped:

(load "myfile.ss"
(lambda (x)
(pretty-print
(if (annotation? x)

(annotation-stripped x)
x))))

In this case, the “evaluator” passed to load can actually assume that its input is an annotation. This is not
true of evaluators in general, which might be called on s-expressions constructed at run time.

Finally, the procedure datum->syntax now accepts either an annotated or unannotated input datum.

2.4. More foreign datatype (ftype) support (8.4)

Support for function ftypes has been added to the ftype mechanism. A function ftype takes one of the
following two forms:

(function (arg-type ...) result-type)
(function conv (arg-type ...) result-type)

The conv , arg-type, and result-type specifiers are identical to those accepted by foreign-procedure.

Function ftypes are valid only at the top level of an ftype, e.g,:

(define-ftype bvcopy t (function (u8* u8* size t) void))

or as the immediate sub-type of a pointer ftype, as in the following definitions, which are equivalent assuming
the definition of bvcopy t above.

(define-ftype A
(struct
[x int]
[f (* (function (u8* u8* size t) void))]))

(define-ftype A
(struct
[x int]
[f (* bvcopy t)]))

That is, a function cannot be embedded within a struct, union, or array, but a pointer to a function can be
so embedded.

A function ftype can be used with make-ftype-pointer to create an ftype-pointer to a C function, either
by providing the name of the C function or its address, possibly obtained via the foreign-entry procedure,
as illustrated by the following equivalent definitions:

(define bvcopy-fptr (make-ftype-pointer bvcopy t "memcpy"))

(define bvcopy-fptr (make-ftype-pointer bvcopy t (foreign-entry "memcpy")))

A library that defines memcpy must be loaded first via load-shared-object, or memcpy must be registered
from C via one of the methods described in Section 4.8 of the User’s Guide.

An ftype pointer can also be obtained as a return value from a C function declared to return a function
type. However it is obtained, an function ftype pointer can be converted into a Scheme-callable procedure
via ftype-ref:

(define bvcopy (ftype-ref bvcopy t () bvcopy-fptr))

Chez Scheme Version Version 8.4 Release Notes Page 3

(define bv1 (make-bytevector 8 0))
(define bv2 (make-bytevector 8 57))
bv1 ⇒ #vu8(0 0 0 0 0 0 0 0)
bv2 ⇒ #vu8(57 57 57 57 57 57 57 57)
(bvcopy bv1 bv2 5)
bv1 ⇒ #vu8(57 57 57 57 57 0 0 0)

Thus, function ftypes can be used as alternative to foreign-procedure for creating Scheme-callable wrap-
pers for C functions. Similarly, ftypes can be used as an alternative to foreign-callable for creating a
C-callable wrapper for a Scheme procedure, simply by passing make-ftype-pointer a Scheme procedure:

(define fact
(lambda (n)
(if (= n 0) 1 (fact (- n 1)))))

(define-ftype fact t (function (int) int))
(define fact-fptr (make-ftype-pointer fact t fact))

The resulting function ftype pointer can be passed to a C routine, which can invoke it as it would any other
function pointer. When a C-callable wrapper is created for a Scheme procedure in this manner, the address
embedded within the ftype pointer is a pointer into a Scheme code object. Since all Scheme objects, including
code objects, can be relocated or even reclaimed by the garbage collector the code object is automatically
locked, as if via lock-object, before it is embedded in the ftype pointer. The code object should be unlocked
after its last use from C, since locked objects take up space, cause fragmentation, and increase the cost of
collection. Since the system cannot determine automatically when the last use from C occurs, the program
must explicitly unlock the code object, which it can do by extracting the address from the ftype-pointer
converting the address (back) into a code object, and passing it to unlock-object:

(unlock-object
(foreign-callable-code-object
(ftype-pointer-address fact-fptr)))

Once unlocked, the ftype pointer should not be used again, unless it is relocked, e.g., via:

(lock-object
(foreign-callable-code-object
(ftype-pointer-address fact-fptr)))

A program can determine whether an object is already locked via the new locked-object? predicate.

In addition to function ftypes, the ftype syntax supports three new base types: wchar t, which is equivalent
to the existing wchar, size t, and ptrdiff t. This set corresponds to the set required by ANSI C to be
defined in the stddef.h header file, and thus completes the set of base types built into or required to be
available by ANSI C.

One other change has been made to the ftype mechanism: ftype-pointer->sexpr has been modified to
produce more readable output. In particular, null pointers are detected and represented by the symbol null,
and Scheme strings are used to represent the contents of character arrays and character pointers, i.e., those
declared to be of type char or wchar. The length of the string produced for a character array is the lesser of
the length of the array and the location of the first null character, which, if present in the character array,
is not included in the string. The length of the string produced for a character pointer is determined solely
by the position of the first null character found. This can lead to problems if the character array or pointer
is not null-terminated; in such cases, the data should be extracted via ftype-ref instead.

2.5. Source information for primitive argument-count errors (8.4)

In previous releases, source information for argument-count errors was produced by the compiler for a subset
of primitives; this has now been extended to all primitive calls. The same information is now also produced

Chez Scheme Version Version 8.4 Release Notes Page 4

for interpreted code, i.e., the evaluator used by Petite Chez Scheme.

2.6. Improved recovery from invalid-memory references (8.4)

In order to handle invalid memory references caused by improper use of the ftype mechanism more reliably,
two changes have been made. First, the Windows versions of Chez Scheme now detect and attempt to recover
from invalid memory references, while in previous releases an invalid memory reference caused termination.
Second, the recovery process has been made more robust, particularly with respect to resulting invalid
pointers that might have caused problems during collection. Invalid memory references should still be
avoided, whenever possible, since complete recovery cannot always be guaranteed.

2.7. Additional foreign datatype (ftype) support (8.3)

The ftype-&ref, ftype-ref, and ftype-set! operators added in Version 8.2 have been extended to take
an optional index. For example, while (ftype-ref double () fptr) references the double pointed to by the
ftype pointer fptr , (ftype-ref double () fptr 1) references the double following the double pointed to by
fptr , and (ftype-ref double () fptr -1) references the double preceding the double pointed to by fptr .

Also, for pointer ftypes created with the * syntax, an index is now allowed in place of a * in the list of
accessors, where it serves the same purpose as the optional index described above.

2.8. Eq hashtable references no longer destructive (8.3)

In previous versions, apparently nondestructive operations on hashtables, including hashtable-ref, are
potentially destructive if passed an eq or eqv hashtable, since they may need to rehash part of the table
after a garbage collection occurs. This rehashing is now performed directly by the collector so that these
operations are no longer destructive. The impact of this change is that concurrent hashtable references are
now thread-safe. Assignments of new values to existing keys, e.g., via hashtable-set!, are also thread-safe.
Synchronization is still required for all hashtable operations whenever hashtable entries might be concurrently
added or removed, e.g., by hashtable-set! or hashtable-delete!.

2.9. New hashtable-values procedure (8.3)

The new procedure hashtable-values can be used to obtain a vector containing the values stored in a
hashtable. Previously, the values could be obtained only with the keys via hashtable-entries, which
requires two vectors, one for keys and one for values, to be created, rather than just one.

2.10. Fasling of eq hashtables (8.3)

Eq hashtables can now be fasled out as part of a compiled file or directly via fasl-write.

2.11. Inspector and profiler source information for macro calls (8.3)

The expander now transfers source information from a macro call to the output of the macro call, if the
output does not already have source information. This makes more source information available to the
inspector and profiler (via profile-dump-html). The compiler also does a better job of propagating source
information through various optimizations. On the other hand, datum->syntax no longer transfers source
information from the template identifier to the datum, since doing so typically resulted in misleading source
information.

Chez Scheme Version Version 8.4 Release Notes Page 5

2.12. Line numbers in profile-dump-html output (8.3)

By default, the html rendering of a source file by profile-dump-html now includes line numbers. The new
parameter profile-line-number-color can be used to determine their color (which defaults to a slightly
dark shade of gray). When this parameter is set to false, no line numbers are produced.

2.13. Change in implicit-exports semantics (8.3)

If (implicit-exports #t) appears among the definitions of a module, (implicit-exports #t) is no longer
implied for an enclosing module or library. This allows the programmer to exercise finer control over implicit
exports with no loss of expressivity, since (implicit-exports #t) can always be added to the enclosing
module or library if desired.

2.14. New compile-file-message parameter (8.3)

The “compiling input-file with output to output-file” message printed by compile-file, compile-library,
compile-program, and compile-script can be suppressed by setting the parameter compile-file-message
to #f. The parameter defaults to #t.

2.15. New compile-library-handler parameter (8.3)

A new parameter compile-library-handler has been added to allow programmers to control how libraries
are compiled by the expander when compile-imported-libraries is #t and the expander determines that
an imported library needs to be compiled. The parameter must be set to a procedure, and the procedure is
called by the expander with two string arguments identifying the input and output paths. The procedure
should invoke compile-library and pass it the two arguments. The default value of the parameter does
exactly that. The procedure can perform other operations as well, such as parameterizing compilation
parameters, establishing guards, or gathering statistics.

2.16. library-directories and library-extensions now thread parameters (8.3)

In previous versions, these were global parameters for no good reason.

2.17. Parameterization of cp0 compilation parameters (8.3)

run-cp0, cp0-effort-limit, cp0-score-limit, and cp0-outer-unroll-limit are now parameterized by
compile-file, compile-library, compile-program, and compile-script, like most other compilation
parameters. Thus, if one is set within a source file at compile time (via an eval-when form), the setting will
affect the compilation of that source file only.

2.18. Foreign datatype (ftype) support (8.2)

A new, high-level, and efficient syntactic interface for manipulating foreign data has been added. Through the
define-ftype form, the interface supports the declaration of foreign types (ftypes), including structures,
unions, arrays, and bit fields, and it allows control over the endianness and packing of the fields of the
type. It also supports creation (make-foreign-pointer), access (foreign-&ref and foreign-ref), and
assignment forms (foreign-set!) with automatic type checking to ensure that all accesses are consistent
with the declared type of a foreign pointer. As with most other type checks, the checks are disabled at
optimize-level 3.

Chez Scheme Version Version 8.4 Release Notes Page 6

Ftypes can also be used as foreign-procedure and foreign-callable argument and return types, so
there is often no need to deal directly with the addresses of foreign data. Structs, unions, and arrays can
be passed only by reference and must be explicitly wrapped in the syntax of the foreign-procedure or
foreign-callable form with a pointer ftype specifier, i.e., (* ftype). Base types, including user-defined
aliases for base types, can be passed by value and should not be so wrapped except when the argument or
return value should be a pointer to a base type rather than the base type itself.

Foreign objects can be inspected, like other objects, via the inspector. It is also possible to convert a foreign
object (including one with cycles) into an s-expression suitable for pretty-printing, making it relatively easy
to view the contents of a foreign object.

2.19. Locks (8.2)

A new low-level lock mechanism for synchronization of parallel programs has been added. Locks are intended
to be allocated outside of the Scheme heap and, if allocated in memory shared by multiple processors, can
be used for synchronization among separate O/S processes. Locks can also be used in place of mutexes for
synchronization among the threads of a single process in threaded versions of Chez Scheme. Locks lack some
of the functionality of mutexes but have lower overhead than mutexes.

2.20. New export forms (8.1)

Three new export forms have been added:

(export <export-spec> ...)
(implicit-exports <boolean>)
(indirect-export id indirect-id ...)

Each of these forms is a definition. The first two can appear only within the definitions of a module or
library; the third can appear anywhere other definitions can appear.

The export form causes the identifiers specified by each export-spec to be exports of the enclosing module
or library. An export-spec is one of:

export-spec −→ identifier
| (rename (old-identifier new-identifier) ...)
| (import import-spec ...)

The first two are syntactically identical to the R6RS library export form export-specs, while the third is
syntactically identical to a Chez Scheme import form, which is an extension of the R6RS library import
subform. If the export-spec is an identifier, that identifier becomes an export of the enclosing library or
module. If it is a rename form, the bindings of the old identifiers become exports under the new identifier
names. If it is an import form, the imported identifiers become exports, with aliasing, renaming, prefixing,
etc., as specified by the import-specs.

The module or library whose bindings are exported by an import form appearing within an export form
can be defined within or outside the exporting module or library and need need not be imported elsewhere
within the exporting module or library.

The implicit-exports form determines whether identifiers that are not directly exported from a module or
library are automatically indirectly exported to the top level if any meta-binding (keyword, meta definition,
or property definition) is directly exported from a library or module to top level. The default for libraries is
#t, to match the behavior required by the R6RS, while the default for modules is #f, to match the behavior
of previous versions of Chez Scheme. The implicit-exports form is meaningful only within a library, top-
level module, or module enclosed within a library or top-level module. It is allowed but ignored in a module
enclosed within a lambda, let, or similar body, because none of that module’s bindings can be exported to
top level.

Chez Scheme Version Version 8.4 Release Notes Page 7

The advantage of (implicit-exports #t) is that indirect exports need not be listed explicitly, which is
convenient. One disadvantage is that it might result in more bindings than necessary being elevated to top
level where they cannot be discarded as useless by the optimizer. For modules, another, often significant,
disadvantage is such bindings cannot be proven immutable, which inhibits important optimizations such as
procedure inlining.

Finally, the indirect-export form declares that the named indirect-ids are indirectly exported to top level
if id is exported to top level. It is meaningful only within a top-level library, top-level module, or module
enclosed within a library or top-level module. It is allowed anywhere else definitions can appear, however,
so macros that expand into indirect export forms can be used in any definition context.

2.21. Change in import import-only (8.1)

In previous versions, an import or import-only form with multiple subforms is treated the same as a
sequence of import or import-only forms. For import, the consequences of this are that a module name
visible in the scope of the import form and reference by one of its subforms can be shadowed by the imports
of an earlier subform. For import-only the consequences are (1) a module name referenced in the second
or a subsequent subform must be imported via the preceding subform, and (b) only the bindings imported
by the last subform are visible in the rest of the body in which the import-only form appears.

In Version 8.4, all of the module names referenced by any of the subforms are scoped where the import
or import-only form appears. Furthermore, for import-only, all (and only) the imports specified by the
entire set of subforms are visible where the import-only form appears. This simplifies the task of creating
a limited local scope from multiple libraries and modules.

If the old behavior is desired, a macro that expands into a sequence of import forms can be used, e.g.:

(define-syntax import*
(syntax-rules ()
[(subform . . .) (begin (import subform) . . .)]))

2.22. Improved support for define-property (8.1)

When properties attached to the same identifier with different keys are imported from different modules or
libraries, all of the properties are now visible. For example, if library (L1) attaches a car property to cons
and reexports cons, while library (L2) attaches a cdr property to cons and reexports cons, and both (L1)
and (L2) are imported, the car and cdr properties are both available to a macro within the scope of the
imports.

Also, if indirect exports are declared for an identifier imported into and reexported from a library or top-level
module, and the identifier is given a property via define-property within that library or top-level module,
the indirect exports are now indirectly exported to top level when the identifier is exported to top level, even
though indirect exports are normally ignored for reexported bindings.

Finally, an identifier that is made the alias of another identifier via import or alias forms now has the same
properties as the aliased identifier at the point where the alias occurs, although properties subsequently
defined for either identifier do not affect the other.

2.23. Improved library-group support (8.1)

The library-group now handles “synthetic cycles” involving static dependencies. For example, if library
(C) depends on library (B), and library (B) depends on library (A), putting libraries (A) and (C) but not
(B) into a library group creates a “synthetic cycle” involving the library group and the separate library (B).
Previously, such cycles resulted in cyclic dependency errors.

Chez Scheme Version Version 8.4 Release Notes Page 8

2.24. Improved top-level begin library support (8.1)

When multiple libraries and top-level programs appear in a top-level begin form, the expander now delays
the invocation of each library until just before it is actually needed. Previously, all libraries not defined in
the same top-level begin form were invoked before any of the forms in the begin were evaluated, which
sometimes led to undefined library or cyclic dependency errors.

2.25. Fewer import dependencies (8.1)

Libraries imported only locally in code compiled to a file no longer show up as import dependencies for the
compiled code, reducing load-time overhead for the compiled code and eliminating the need to distribute
some libraries with the compiled code. If a library’s exported identifiers need to be visible when the compiled
code is subsequently loaded, the library should be imported explicitly at top level. This change affects only
code defined outside of a library or RNRS top-level program.

2.26. No longer using the SIGCHLD signal (8.1)

In previous versions of Chez Scheme, processes created under Unix-based operating systems by the process
and open-process-ports procedures were reaped via a SIGCHLD interrupt handler. In Version 8.4, such
processes are instead reaped by the garbage collector, and the system no longer sets up a SIGCHLD handler.
This allows programs to set up their own handlers without interfering with the reaping of those created
by process and open-process-ports. It also eliminates a potential race condition involving the system
procedure or foreign procedures that create and wait for subprocesses after first disabling the SIGCHLD
interrupt.

2.27. top-level-syntax generalization (8.1)

The top-level-syntax procedure now returns a binding for any bound identifier, even if it is defined as a
variable, and top-level-syntax? returns true for all bound identifiers. Thus, it is now possible to transfer
the compile-time binding of any identifier to another, regardless of the type of binding.

2.28. NetBSD x86/x86 64 support (8.1)

Support for running Chez Scheme with 32-bit pointers on the i386 architecture or 64-bit pointers on the
x86 64 architecture under NetBSD has been added, with machine types i3nb (32-bit), a6nb (64-bit), ti3nb
(32-bit threaded), and ta6nb (64-bit threaded). C code intended to be linked with these versions of the
system should be compiled using the Gnu C compiler’s -m32 or -m64 options as appropriate.

2.29. Now using msvcr100.dll (8.1)

Windows builds of Chez Scheme now link against msvcr100.dll. Static libraries built using the correspond-
ing libcmt are also available. With the current Microsoft C compiler tools, manifests are no longer required
or recommended and so are no longer recorded with the DLLs and executables.

3. Bug Fixes

3.1. assert return value (8.4)

The fix below to assert was made incorrectly and caused assert not to return the value of its subexpression
when that value is true. This new bug has been fixed. [This bug dated back to Version 8.3.]

Chez Scheme Version Version 8.4 Release Notes Page 9

3.2. let-values and assert fasl errors (8.3)

A bug that resulted in a fasl error while compiling files containing certain let-values, let*-values,
define-values, and assert forms has been fixed. To trigger the bug, the source code for one of these
forms had to include a non-faslable value, such as a procedure or generic hashtable; or one of the identifiers
occurring in the form had to have an expand-time property whose value was non-faslable. The problem
resulted from the inclusion of the source syntax object in the generated code for use in producing more
useful error messages; the solution is to create the useful error message ahead of time and include just the
message in the generated code. [This bug dated back to Version 7.5 for assert and 7.9.2 for let-values.]

3.3. Bignum hash values (8.3)

A bug in the handling of bignum hash values by the generic hashtable routines has been fixed. [This bug
dated back to Version 7.5.]

3.4. Keyboard interrupt segmentation violation (8.3)

A bug that caused segmentation violations after a keyboard interrupts on 64-bit machines has been fixed.
Also, when such interrupts occur while reading from the console, they are no longer noncontinuable interrupts.
[This bug dated back to Version 7.9.2.]

3.5. Expression-editor paste problems (8.2)

A bug that resulted in an invalid memory reference if ^V (control-V) was entered into the expression editor
when no text is available to paste on 64-bit versions of Chez Scheme has been fixed. The code that locates
and inserts pasted text under X Windows has also been made more robust to reduce the likelihood that an
ill-behaved application will deny access to its selected text. [This bug dated back to Version 7.9.1.]

3.6. define-record-type and undefined rcd/rtd set (8.1)

A bug that sometimes resulted in an unexported-identifier exception for rtd or rcd when a record type
defined via define-record-type and exported by a top-level module or module defined at the top level of
a library was used as the parent for another record type defined outside of the module or library has been
fixed. [This bug dated back to Version 7.5.]

3.7. Incorrect error messages with source-directories set (8.1)

A bug that caused the incorrect (and useless) message “filename not found in source directories” when a
syntax error occurred in a file loaded via load, load-library, or load-program while source-directories was
set to something other than (".") or ("") has been fixed. [This bug dated back to Version 7.5.]

3.8. Bug in record-constructor (8.1)

A bug that caused certain record constructors for records with parents who themselves have parents and
user-defined protocols to produce an “incorrect number of arguments” error has been fixed. [This bug dated
back to Version 7.5.]

Chez Scheme Version Version 8.4 Release Notes Page 10

3.9. Bug in string-titlecase (8.1)

A bug that resulted in string-titlecase causing an invalid memory reference when passed a string con-
taining a sequence of two or more digits has been fixed. [This bug dated back to Version 7.5.]

3.10. Bug in exp (8.1)

A bug in exp that caused it to return incorrect results for large inputs, including +inf.0, has been fixed. The
same bug also caused some problems with expt and possibly with certain other mathematical operations
that use exp internally. [This bug dated back to Version 4.0.]

3.11. Missing check in (rnrs) case (8.1)

Non-pair unparenthesized keys are now properly rejected by the version of case exported by the (rnrs base)
and (rnrs) libraries. [This bug dated back to Version 7.5.]

3.12. Missing check in fxvector-set! (8.1)

fxvector-set! now properly checks to make sure its third (new value) argument is a fixnum. [This bug
dated back to Version 7.3.]

3.13. Engine space leak (8.1)

A bug that caused the engine system to retain inaccessible continuations has been fixed.

4. Performance Enhancements

4.1. Compile-time record instance creation (8.4)

The source optimizer already produced inline machine code for record constructors,, predicates, accessors,
etc. It now goes a step further and folds (performs at compile time) construction of nongenerative rtds,
and immutable record instances. It also now folds record predicate calls and field references on constant
immutable records.

4.2. Native threads under Windows (8.4)

Thread support under Windows is no longer based on the pthreads-win32 library but instead uses Windows
API threading directly, cutting down on some overhead.

4.3. Faster macro expansion (8.3)

The expander’s handling of libraries with numerous implicit indirect exports took a performance hit in
Version 8.1 when the new library export forms were added. This performance hit has been eliminated.
Furthermore, the macro expander now handles any program with large numbers of identifier bindings more
efficiently even than Version 8.0. The improvement in overall compile time is typically around 10-15% versus
Version 8.0 and can be an order of magnitude or more versus Version 8.1.

Chez Scheme Version Version 8.4 Release Notes Page 11

4.4. Faster dumping of profile information (8.3)

The procedure profile-dump-list is now considerably faster when processing large amounts of profiled
code. The procedure profile-dump-html is somewhat faster as well, although its cost is largely determined
by the time required to read source files and write html output.

4.5. Better arithmetic support (8.1)

The fx* procedure is now inlined even outside of optimize-level 3 on x86 and x86 64 processors, and a
slight improvement has been made in the efficiency of generic arithmetic operators when passed non-fixnum
arguments.

4.6. Slightly faster type checks (8.1)

Reduced by one instruction the cost of vector? and certain other type checks. This is unlikely to have
measurable impact on most programs.

Chez Scheme Version Version 8.4 Release Notes Page 12

