[1] J. Michael Ashley and R. Kent Dybvig. An efficient implementation of multiple return values in Scheme. In Proceedings of the 1994 ACM Conference on Lisp and Functional Programming, 140-149, June 1994.

[2] William Briggs and Van Emden Henson. The DFT: An Owner's Manual for the Discrete Fourier Transform. Society for Industrial and Applied Mathematics, Philadelphia, 1995.

[3] William F. Clocksin and Christopher S. Mellish. Programming in Prolog, second edition. Springer-Verlag, 1984.

[4] Sam M. Daniel. Efficient recursive FFT implementation in Prolog. In Proceedings of the Second International Conference on the Practical Application of Prolog, 175-185, 1994.

[5] R. Kent Dybvig. Chez Scheme User's Guide: Version 7. Cadence Research Systems, 2003.

[6] R. Kent Dybvig and Robert Hieb. Engines from continuations. Computer Languages, 14(2):109-123, 1989.

[7] R. Kent Dybvig, Robert Hieb, and Carl Bruggeman. Syntactic abstraction in Scheme. Lisp and Symbolic Computation, 5(4):295-326, 1993.

[8] Daniel P. Friedman and Matthias Felleisen. The Little Schemer, fourth edition. MIT Press, 1996.

[9] Daniel P. Friedman, Christopher T. Haynes, and Eugene E. Kohlbecker. Programming with continuations. In P. Pepper, editor, Program Transformation and Programming Environments, 263-274. Springer-Verlag, 1984.

[10] Christopher T. Haynes and Daniel P. Friedman. Abstracting timed preemption with engines. Computer Languages, 12(2):109-121, 1987.

[11] Christopher T. Haynes, Daniel P. Friedman, and Mitchell Wand. Obtaining coroutines with continuations. Computer Languages, 11(3/4):143-153, 1986.

[12] Robert Hieb, R. Kent Dybvig, and Carl Bruggeman. Representing control in the presence of first-class continuations. In Proceedings of the SIGPLAN '90 Conference on Programming Language Design and Implementation, 66-77, June 1990.

[13] IEEE Computer Society. IEEE Standard for the Scheme Programming Language, May 1991. IEEE Std 1178-1990.

[14] Richard Kelsey, William Clinger, Jonathan Rees, et al. The revised5 report on the algorithmic language Scheme. Higher Order and Symbolic Computation, 11(1), 1999.

[15] Brian W. Kernighan and Dennis M. Ritchie. The C Programming Language, second edition. Prentice Hall, 1988.

[16] Peter Naur et al. Revised report on the algorithmic language ALGOL 60. Communications of the ACM, 6(1):1-17, January 1963.

[17] David A. Plaisted. Constructs for sets, quantifiers, and rewrite rules in Lisp. Technical Report UIUCDCS-R-84-1176, University of Illinois at Urbana-Champaign Department of Computer Science, June 1984.

[18] J. A. Robinson. A machine-oriented logic based on the resolution principle. Journal of the ACM, 12(1):23-41, 1965.

[19] Guy L. Steele Jr. Common Lisp, the Language, second edition. Digital Press, 1990.

[20] Guy L. Steele Jr. and Gerald J. Sussman. The revised report on Scheme, a dialect of Lisp. MIT AI Memo 452, Massachusetts Institute of Technology, January 1978.

[21] Gerald J. Sussman and Guy L. Steele Jr. Scheme: An interpreter for extended lambda calculus. Higher-Order and Symbolic Computation, 11(4):405-439, 1998. Reprinted from the AI Memo 349, MIT (1975), with a foreword.

[22] Oscar Waddell and R. Kent Dybvig. Extending the scope of syntactic abstraction. In Conference Record of the Twenty Sixth Annual ACM Symposium on Principles of Programming Languages, 203-213, January 1999.

[23] Oscar Waddell, R. Kent Dybvig, and Dipanwita Sarkar. Robust and effective transformation of letrec. In Proceedings of the Third Workshop on Scheme and Functional Programming, October 2002. Georgia Tech College of Computing Technical Report GIT-CC-02-48.

[24] Mitchell Wand. Continuation-based multiprocessing. Higher-Order and Symbolic Computation, 12(3):285-299, 1999. Reprinted from the proceedings of the 1980 Lisp Conference, with a foreword.

R. Kent Dybvig / The Scheme Programming Language, Third Edition
Copyright © 2003 The MIT Press. Electronically reproduced by permission.
Illustrations © 2003 Jean-Pierre Hébert
ISBN 0-262-54148-3 / LOC QA76.73.S34D93
to order this book / about this book